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Abstract-The process of unsteady heat conduction in bodies with and without phase transition of the 
substance is considered in terms of the migration of isothermal surfaces. The equations are derived to 
determine the velocity of their motion in a half-space and in limited bodies at the thermophysical charac- 
teristics which are dependent on temperature. In this case a new common feature of thermal kinetics 
regularization that is independent of the velocity of the isotherms motion of time is found. The independence 
of this quantity in central parts of limited bodies of a thermal situation on their outer surfaces is also 
revealed. The effect of non-linear boundary conditions on the kinetics of the temperature fields by the 
radiation law is considered. The regularities and the specific features of temperature fields formation found 
form the basis for the identi~~tion of the heat transfer coefficient and the dependence of thermal ditfusivity 

on temperature. 

1. INTRODUCTION 

ON SOLVING linear and non-linear problems of the 
heat and mass transfer theory, on determing the ther- 
mcmhysical characteristics of the body material under 
conditions of its heat exchange with the surroundings, 
a non-traditional treatment of the studied phenom- 
enon turns out to be useful. As will be shown, the 
idea of considering the process of non-stationary heat 

conduction in terms of the migration of isothe~a1 
(isopotenrial) surfaces rather than in terms of spatial- 
temporal temperature variation proves to be fruitful. 
In this case the proolems of non-stationary heat con- 
duction with and witnout phase transition are com- 
bined, it appears possible to find a number of new 
regularities of the processes studied and new ways are 
opened for solvmg non-linear problems. 

Such an approach was shown when studying mass 
transfer in capillary-porous bodies [l, 21. In the then 
published paper by Dix and Cizek [3] the one-dimen- 
sional equation of heat conducrion in the migration 
of isotherms was obtained and some problems of its 
numerical solution were considered. A great series of 
works [4-201 by this autnor made it possible to reveal, 
in terms of the migration of isotherms, a number of 
new specific features of non-stationary heat con- 
duction that were applied to the determination of the 
thermophysi~dl properties of the body material, of the 
parameters of the boundary conditions, to numerical 
and analytical solutions of non-linear problems with 
and without phase transition of the substance. The 
problem under consideration attracts the ever grow- 
ing interest of researchers [21, 221. 

2. REGULARITIES OF THE MIGRATION OF 

ISOTHERMAL SURFACES IN BOUNDED BODIES 

WITH CONSTANT THEK~OPHYSICAL 

PROPERTIES 

It is evident that the migration of isothermal sur- 
faces in a solid body should be characterized by a 
certain velocity v, the relation for which may be 
obtained from the followmg considerations. 

As is known a non-stationary one-dimensional tem- 
perature field in bodies of the simplest form-a plate 
(m = I), a cylinder (m = 2) a sphere (m = 3)--is 
found from the solution of the differential equation 

(1) 

with the corresponding boundary value conditions. 
Satisfy equation (1) representing a symmetric 

development of a temperature field in the form of a 
series built by even powers of the coordinate x 

T(x,2) = x A,,(t)x2”. (2) 
,I== 0 

Then, bearing in mind that for an isothermal surface, 
T = const., its positron x in a body is variable with 
time z, calculate the di~erential of both sides of 
equation (2) 



NOMENCLATURE 

LI = i/c’, thermal diffusivity [m’s ‘1 I*. 1: = I’ l,)/n dimensional (m s ‘) and 

Bi = cd,jl, Biot number dimension&s velocities of migration 

C, C(T) volumetric heat capacity isotherms 

[Jm ‘K ‘1 .L’ coordinate [ml. 

(‘0 = 5.67 W m * K ‘, emissivity of an 

absolutely black body Greek symbols 

FO = az/l& Fourier number a coefficient of heat transfer [W m ‘K ‘1 

1” characteristic dimension of a body (plate I-: emissivity of body surface 

half-thickness, radius of cylinder, 0 = (V.5 7) - T,,)I(T,- T,,), 
sphere) [m] 9 = T(x, r)/T,, dimensionless 

I71 coefficient of body shape equal to unity, temperatures 

two or three for plate. cylinder and i, i(T) thermal conductivity [W m ’ K ‘1 

sphere. respectively 5 = x/l,, dimensionless coordinate 

Sk = EC,J,,T~ IO ‘/i., Stark number 7 time. 

T(x. 7) current temperature 

WI Mathematic symbols 

Tf temperature of surrounding medium J,, J, first-kind zero- and first-order Bessel 

Kl functions 

T, initial temperature [K] erfcu= I-erfu= l-2&exp(-z?)dii/J(n) 

T, radiator temperature [K] modified integral of probability. 

whence the unknown velocity of the migration of where 
isotherms is 

d(lo -4 S,(m,n-l)=n~ 2k(m+2k-2), 
I-I 

p = 
[ 1 i;t 7 n I 

(3) 
S,(m,n- I) = n 2k(m+2k). 

i-1 

It is possible to determine A,,(7) and A;,(7) by sub- 
stituting series (2) into equation (1) 

C i A;,(z)x’” = ;. f 2n(2n+m-2)A,,,(r)~‘“~~ 
,I = 0 ,I= I 

and equating the coefficient-functions A;,,(7) and 
A,,,(r) of the left- and right-hand sides of this equation 
at the same powers of .Y. 

In this case we obtain first 

Az(~) = CA’,(r)/2?& = A;,(7)/2ma 

and then, using equation (4), 

A,(t) = &(7)/8(m+2)ma2, 

Ah(7) = A;;‘(z)/48(m+4)(m+2)ma3 

etc. 

(4) 

As a result, it is not difficult to show that the velocity 
of the migration of isotherms, determined by equation 

(3), is 

It follows from equation (2) that the function A,(r) 

coincides with the dependence of the temperature of 
the body centre of symmetry, T(0, T), on time. 

The analytical function A,(7) may be approximated 
by a power series. Then, in view of the fact that the 
partial sums of factorial series S, (m, n- 1) and 

S,(m, n - I) grow with n -+ cc faster than the partial 
sums of any power series the conclusion that in this 

case the series in the numerator and denominator 
of equation (5) everywhere converge according to 
D’Alambert is reached. 

In fact, taking, for example, the dependence of the 
temperature of the body centre of symmetry as an 
exponential function of time A,(T) - exp (c(7) we 

obtain a particular case of the series in equation (5) 
_c 

a C exp (cn)(crx’/a)“/S, (m, n- 1)x’ 
n-2 

and 

a 1 exp (az)(~xL/a)“jS2(m, II- 1 ).x2. 
,1= z 

Calculating for the first of the series the limit of the 
nth to (n- 1)th terms ratio, we have for n + cc 
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i.e. the mentioned series really converges everywhere 
by X. An analogous conclusion also refers to the 
second series considered. 

Allowing for the fact that the case of heat propa- 
gation with infinitely high velocity is analysed, it is 
assumed that for T > 0 A,(z) # 0, so the conclusion 
on the existence of u determined from equation (5) is 
derived. 

Formula (5) in the case of linear time-variation of 
the temperature of the body centre of symmetry 
(quasi-stationary thermal conditions) A,(r) N z gives 
the relationship for dete~ining the velocity of 
the migration of an isothermal surface 

v = ma/x, (6) 

which is obtained also as a result of the analysis of 
familiar partial solutions [23] for constant heat flux 
density in the bounded body surface (the second-kind 
boundary condition) or as a result of the linear time- 
variation of temperature in it [24]. 

With the variation of the temperature of the sym- 
metry centre over the decaying exponent (a regular 
heat mode) 

n,(z) = @exp(--cxz), CI > 0 

based on equation (5) we come to the following 
relation for the calculation of the velocity of the 
migration of isotherms 

mu 
v = ~ 

x 

1 -ct.x2/2ma+r2~4/8(mf2)ma2- ... 

’ ~-ax2/2(~+2)a+cr2x4/8(m+4)(m+2)a2- .‘:’ 

(5’) 

Having introduced the variable y = xJ(a/a) and 
making use of the known expansions of the function 
into Taylor’s series, transform equation (5’) as 

(a) at m = 1 

“= I 

u -cos y 
=_-x-_ = ay ctg y/r, (5;) 

X -sin y/y 

(b) at m = 2 

2a 
i: (- l)“+‘(y/2)*“/@2!)* 

I,=-x~=o 

2a JO(Y) 
= -- x 2J,(y)ly 3 

.h (5;) 

(c) at m = 3 

z 

3a 
~~,(-l)“r2”-‘/(2n-1)! 

u=---x m ~- ____- 

x 3”?, p-2/(2n-1)!(2n+l) 

3a -sin y/y 
z -- x __A-_-__ 

x 3(ycosy-siny)3/y 

ay* sin y 

x(yeosy-_sinv)’ 
(5;) 

It is not difficult to show that at tl = apf/li obtained 
from equations (5’,), (5;) (5;) the following dimen- 
sionless velocities of the migration of isotherms exist 

w -0 
d = vl,/a = - 

[ 1 aIio T 
: 

(a) m = 1 

(b) m = 2 

d=p, ctgp,i, (5’9 

F= /M5-‘-(I1 ctgPl0, (5;) 

where ).L, is the first positive root of characteristic 
equations of the problem of non-stationary heat con- 
duction with the boundary conditions of the third- 
kind at constant Bi that with a symet~~ally developing 
temperature field have the form 

(a) m = I 

p = Bijctg y, (7,) 

(b) m = 2 

P = B~~~(f~)~~~ (A, (72) 

(c) m=3 

fl = (1 - Bi)/ctg fi. (73) 

The same formulae are also obtained with the 
corresponding consideration of the relation 

describing a symmetrical one-dimensional tem- 
perature field at the stage of a regular heat mode. In 
equation (8) A ,,m is the first thermal amplitude which, 
in the case of the third-kind boundary conditions, is 
equal to A ,. , = ~/PI> At.2 = ~PIJI(P,), A,,3 = ~/PI; 

x,,“,(Q is the coordinate function of the form 

XI,I = cosP15, Xl.2 = JO(P!O> 

xl.3 = siniu,tiS (9) 

and the time function 

II/ ,(Fo) = exp (-j~:Fo). 

In fact, taking logs of equation (8) and then differ- 



cntiating both sldcs Mtth respect to k-0 at (I = idw/, 

the equation shown is obtained 

> x,.,n(:) 
-Pi 

x’,.,,,(5) 
(10) 

based on equation (9), particular cases (5’;)-(5’;) as 
well. 

Figure 1 illustrates, based on the corresponding 

computer calculation, the course of the lines II = ~&WI 
in the coordinates (I - <) - Fo (the passed length- 
time) at Bi = cc for a plate. This figure indicates the 
fact that equidistant portions of the lines correspond 

to the period of regular thermal conditions describing 
the course of different isotherms 0 = ir/r~n (shown by 

a dashed line). 
Using the known relations for the description of 

temperature fields in the bodies with constantly oper- 
ating uniformly spaced heat sources 1231 as a basis 
and considering T(x, t) from the non-equilibrium 
temperature of a stationary state we find also that in 

this case the velocities of the migration of isotherms 
d on the stage of regularized thermal kinetics are cal- 
culated by equations (5’;)-(5’;) and are independent 
of the power of the hear sources. It is also not difficult 
to prove that under the effect of an msLantancous heat 

source symmetricaily located in a body the relation- 
ships (5’;)-(5’;) are preserved, i.e. the value of 27 is 
dependent in this case neither on the power of an 

instantaneous heat source nor on its position in a 

body. 
Thus, the following common feature of thermal 

kinetics regularization may bc introduced [7]: in 
bounded bodies with constant tnermophysical prop- 
erties the dimensionless velocity of the migration 
of isothermai surfaces in the perlods of regular 
and quasi-starlonary thermal conditions depends 
only on the coordinate of the body point and the 
kind of boundary conditions (the initial condition 
7’,, = const. may be omnred in the majority of cdscs). 

The formulated feature of thermal kinetics rcgu- 
larizarion is independent, along with the familiar 
characteristics of Dulnev and Kondratiev, of regu- 
larizatton by temperature fields [25] and, with the 
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FIG. I Isotherms in an unbounded plate with Bi -+ m. 

Luikov principle, ofregularization by heat tluxos that 
generalize the above ones [23]. 

3. SPECIFIC FEATURES OF THE MIGRATION 

OF ISOTHERMAL SURFACES IN CENTRAL 

PORTIONS OF BOUNDED BODIES 

Consideration of correlation (5) for the deter- 
mination of the velocity of the migration of isotherms 
indicates that the assumption on the boundedness of 
the derivatives At’(z) higher than the first-order of 
the body ccnrre temperature with respect to time dnd 

on the smallness of X(X + 0) gives the equation 

/’ = Mu/.\-. (11) 

Thus, it turns out in these assumptrons that the 

velocity L’ in central parts of the bounded bodies is 
independent of the characrer of the thermal condi- 
tions on the bounding surfaces. 

In Fact, equation (IO) fully coincides with relation 
(6) for the parts of the body participating in quasi- 
stationary thermal conditions when the temperature 
of the body symmetry centre changes with time by a 
linear law that is provided by the case of the sccond- 

kind boundary conditions. 
Now to reveal whether relarion (1 I) is valid for the 

stage of regular thermal conditions when third-kind 

boundary conditions are asstgned on the body surface, 
and what is the length of the body central part in 
which this relation is fulfilled. 

In the obtamed relations (5’;)-(5’4) and in formula 

(IO), correlating them, tor regular thermal conditions, 
the first root of the characteristic equations (7,)mm(71) 
depencts on the value of the Biot number, Bi, and, 
therefore, one may speak of the fact that the velocity 
z’is determmcd, to a cerram extent, also by the thermal 
conditions on the boundmg surf&e of the three sim- 
plest bodies (plate, cylinder, sphere) under con- 
sideration. To reveal the character of this relation, 
computer calculations of the values of LT at different Bi 

were made ; the grapmc presentation of the calculation 
results for a plate and a sphere with Bi -+ 1-c and 
Bi = 0.01 arc given in Fig. 2 (lines a. b correspond 10 
Hi --t SK and Bi = 0.0 I for a piate, lines c, d correspond 
to Bi + x and Bi = O.UI for a spnere). 

The most interesting result of the catcuiations is the 
facl that the velocity i: is pracucally independent of 

the value of the Biol number. Bi, that is valid, as is 
seen liom Fig. 2. for central parts of bounded bodies 
0 < i” < 0.25. 

The last indicates the inaependence of ? in the 
mentioned region of the bodies of the thermal con- 
ditions on their outer surface and may be proved 
analytically. 

It is known that I(, is always finite- ,u: < 7r. Then. 
for such small 5s (for small IL,<). that tg ,c,< 2 pi<, 
we have for an unbounded plate instead of equation 

(5’;) 
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FIG. 2. Velocity of isotherms migration in a plate (lines a, b) 
and in a sphere (lines c. d) at Bi = 0.01 (lines a, c) and 

Bi -+ m (lines b, d). 

The velocity d in the central section of a cylinder, 
when p, 5 << 1, may be calculated proceeding from the 
fact that in this case the first-kind Bessel function J, 

for v > 0 is represented as [26] 

J”(P,O g vv+ 1)(!-4,5/2)” 

(r is the gamma function), so that in equation (5’;) 
for I’ the following simplifications 

t’= P,J”(P,:)/Jl(Pl5) 

g rl,(~,5/2)0r~‘(l)l(~,5/2)‘r.-‘(2) = 2/t (11,) 

are obtained. Velocity fi in the spnere central portion 
may be calculated based on equation (5’;) 

and on the known Taylor series expansion of sine and 
cosine functions 

sinpL,5 = ~,5-(~,5)3/3!+[(~L15)5;5!l~,(~(15), 

cos~,5 = 1-(~,5)2/2!+[(/*15)4/4!l~2(~L~). 

Then we have in the denominator of equation (5;) 

where 

1+3(~,5)“(~,/5!-(~,5)~~2/4! 
cp3(r) = 1-(~,<)2/3!+(~,5)4cp,/5! . 

Note that the functions cp,(p,i), (P~(P,<), (p3(p1<) are 
analytical and p,(O) = (~~(0) = ~~(0) = 1. 

As a result in the central portion of a sphere (when 

4 K 1 orLL,<+O)wehave 

F 2 P,/(P,5/3) 2 3/5. (111) 

The independence of u” is determined according to 

equations (5’;)-(5’9 of the thermal conditions on the 

outer boundary of the body follows also from the 

easily proved relationship 

V -’ =o 
PI 

for the central parts of a body, when p, { -+ 0. 
It should be, of course, noted that under the regular 

thermal conditions, when the body temperature time 
variation is described by a simple exponent, the allow- 

ance for relationships (1 1 ,)-( 11 3) leads to the con- 
clusion on the elliptical temperature distribution 
along the coordinate that for fixed Fo when heated 

has the form 

0 = 1-F(m,~,)(1-~T5’/m)“2. (12) 

In fact, equations (1 1 ,)-(1 1 3) with the exponential 

dependence of temperature on time may be obtained 
for small 5 or p, 5 only with the following description 
of the temperature field 

0 = l--A,,,exp(-~~Fo)(l-~(:5’/m)“‘. (13) 

Actually, taking logs and differentiating equation (13) 
with respect to Fo we obtain the equation for the 
velocity d in the form 

d = m(1 -/LL:5’@)/5 (14) 

whence at small p,< there follows the discussed 
relationships (1 1 ,)-( 11,). For an unaounded plate 
(IM = 1) equation (12) can be easily obrained from the 
analysis of the known solution [23] and for a cylinder 

and sphere-only using equations (11 2)r (11 3). The 
ellipse with the half-axes l-0 = F(m,p,) and 
5 = J(m)/p, is the graphic representation of relation- 
ship (12). 

At small values of the Biot number (Bi < 0.1) the 

temperature distribution both in the central portions 
and in the entire body is described by the elliptical law 
(12) at tne regular stage. 

The above results obtained on the specific features 
of bodies may be with even greater ground when 

related to the cores of their components which find 
wide application in engineermg and thermal physics. 
In the latter case they are useo when thermal con- 
ductivny 3. is determined by the method of bicalori- 
meters of a regular mode (plane, cylindrical, spherical) 
as well as in devices for dynamic aetermination of the 
thermophysical properties of bodies. It is shown in 
ref. [9] that the application of relationship (11) allows 
the determination of the thermal diffusivity of the core 
materia! with no limitations on the core-shell pair 
in the so-called thermally insulated cores when d is 
independent either of the sheil properties or the ther- 
mal conditions at the bicdlonmeter boundary, etc. The 
latter greatly simplifies a thermophysical experiment. 

4. SPECIFIC FEATURES OF THE MIGRATION 

OF ISOTHERMAL SURFACES ABOUT THE 

OUTER SURFACE OF A BODY AT THE STAGE 

OF REGULAR THERMAL MODE 

In Section 3 the independence of B in the central 
portion of a body at the stage of a regular thermal 
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mode of the thermal conditions on its bounding sur- 
face is shown. N~itLIrally, a problem arises with respect 

to the dependence of t? at this surface of a body on 
the thermal conditions on the surface when the region 
of regularized kinetics spreads over the entire body. 

It is not difficult to see that at 5 = 1 (on the surface 
flown around) equations f5’;)-(5’;) became as follows 

i- = I’ / ctg p,, (15,) 

c= P,J&U)/J,(P,)~ (152) 

i: = $/(I -/‘, ctg p,). (15,) 

With allowance for the ChaFacteristic equations (7,)- 
(73) relations (15 ,)--(1.5,) may be transformed to the 
form valid for all of the three bodies under con- 

sideration 

d = ,uf/Bi. (16) 

In Fig. 3 the graph of the dependence of z? = pt/Bi for 
a plate, cylinder and sphere (lines a, b and c. respcc- 

tively) is plotted that is constructed using the data 
obtained on a computer. The analysis of Fig. 3 leads 
to the conclusion that z’ is strongly dependent on 
the intensity of convective heat transfer at small Biot 
numbers; with growing Bi (Bi > 30) the mentioned 
relation becomes weak. 

It is easy to see that relationship (16) may form the 
basis for a technique to determine the convective heat 
transfer coefficient CI. In fact, interpreting the results 

of the corresponding thermophysical experiment as 
migration of isothermal surfaces in a heat sensing 

element we obtain a constant velocity of the migration 
of isothermal surfaces L; at a body bounding surface 
5 = 1 when the entire body is involved in the stage of 
regular thermal mode, and then using a computer 

and based on relations (7,).-(73)r (16) or, in case the 
required accuracy of CI determination is not high, we, 
resorting to Fig. 3, find the unknown Biot number 
Bi = al,,% It is clear that in such a way the coefficient 
of convective heat transfer tf, that is constant in time, 
may be determined. However, this method does not 

” 020 I.0 IO 20 3040 

8% 

FIG. 3. Velocity of isotherms migration near a surface of a 
plate, cylinder and sphere (lines a, b, c, respectively). 

rcquirc knowledge of the surrounding temperature 
and this is the obvious simplicity of this calculation 

technique, and may bc decisive for its practical 
implementation. As has been found earlier, there is 
no possibility of determining the value of r by one 
heat sensing device when not knowing the absolute or 
excess value of the temperature of the liquid or gas 
Row. The technique described is very important for 
the determination of the coefticient of convective heat 

transfer from reacting or two phase flows, in the case 
of small cross-sections, etc. 

It is interesting to note that when the entire body is 
involved in the stage of the regular thermal mode the 

notion of equivalent thermal resistance of convective 
heat transfer in the process of non-stationary heat 
conduction may be introduced based on the con- 
sideration of successive motion of isothermal surfaces 
in a body. Earlier this notion existed only for the 

process of stationary heat conduction. At the known 
value of this resistance the assignment of the third- 

kind boun~dry conditions may be substituted by the 
first-kind boundary conditions, which is of interest 
for both the simplification of analogue modelling 
of non-stationary processes and the corresponding 
calculational technique. It has been shown that this 
substitution is possible, at least, for the final stage of 

the considered process. 
The dimensionless time of isotherm migration 

0 = i&m on the elementary path d(1 - <) 

and the final time of migration 0 = itifrrr from the 
point with the coordinate < in a body up to its sym- 
metry centre 5 = 0 is 

At the stage of a regular thermal mode with allowance 
for relationships (5’+(5;) for D obtained, respec- 
tively, for a plate, cylinder, and sphere 

For the first-kind boundary conditions, when the 
equivalent thermal resistance of convective heat trans- 
fcr during the entire process of non-stationary heat 
conduction is equal to zero, the values of ,x, are equal 
to n/2 for a pIate, 2.4048 for a cylinder and z for a 
sphere. Substitution of these values of p, into equa- 
tions (17,)-(17,) and 5 = 1 into the integration limits, 
when the entire body is involved in the stage of the 
regular thermal mode, yields Fo = co. This fact cor- 
responds to the infinite time of the body heating up 
to the surrounding temperature (@ = 1). In this case 
an isothermal surface, D = I, moves in the region of 
a regular thermal mode virtually all the time. 

Then, in a more general case of the third-kind 
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boundary conditions, obtained on the basis of equa- 
tions(l7,)-(17,)thevalueofFo-+coforsome<> 1, 
i.e. with the solid body ‘building-up’ by a material 

with an equivalent thermal resistance to convective 
heat transfer in a non-stationary process. 

Based on equations (17, )-( 17 3) the value of 5 found 
that provides Fo + co at any p, for a plate, cylinder 
and sphere from the relationships 

P,( = n/2, (18,) 

p, 5 E 2.4048, (18,) 

P15 = 1s (18,) 

whence new sizes of bodies mentioned (after 
additional layer ‘building-up’) are obtained 

5 = 71/2P,, 5 2 2.4048/p,, 5 = n/p,. (18’) 

Thus, consideration of the final stage of the process 
of non-stationary heat conduction in a body with the 
characteristic size lo under the third-kind boundary 

conditions may be substituted by consideration of the 
process under the first-kind boundary conditions in a 

body with the characteristic size l,x/2~, , 2.40481,/p,, 
I,n/p, The applicability region of this substitution 
was found on the basis of the corresponding computer 
calculations: within the range BYE [5, co) this sub- 

stitution does not distort the picture of the migration 
of isothermal surfaces 0 E [O. 1 ; 1 .O], when Bi E [0.004 ; 
1.01 this substitution allows the admissible accuracy 
only for isothermal surfaces 0~ [0.9; 1.01, i.e. only for 
the final stage of body heating. 

5. REGULARITIES OF THE MIGRATION OF 

ISOTHERMAL SURFACES UNDER NON-LINEAR 

BOUNDARY CONDITIONS 

Radiative heat transfer is characterized by non- 
linearity in the boundary condition for equation (1) 
which at constant thermophysical properties of the 
material in the dimensionless variables has the form 

as -- 
2r 

= Sk(Pl,, , - 1). 

Unfortunately, literature has no voluminous data 

on the structure of the temperature fields for this case 
which could be sufficient for the determination of the 
regularities of the migration of isothermal surfaces 
since they are given only for the characteristic points 
of a body [27]. Therefore, the corresponding problem 
on the non-stationary symmetric temperature field in 
a plate with identical initial dimensionless tem- 
perature 9, = To/T, equal to 0; 0.166, 0.200, 0.333, 
0.500, 0.800 at the Stark number, Sk, values: 0.01, 
0.02, 0.05, 0.10, 0.20, 0.50, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0 
was solved on a compurer by the grid method 
using the implicit absolutely stable Laasonen 
scheme [28]. The space step At = 0.1 was taken in the 
calculation ; the dimensionless relative temperature 
8 = [T(c, Fo) - To]/( T,- To) was determined at the 

plate points with the coordinates r equal to 1 .OO, 0.95, 

0.85,0.75,0.65,0.55, 0.45,0.35,0.25,0.15, 0.05 at the 
time step Fo = 0.02. The coincidence of the calculated 
values with the data of ref. [27] obtained by the 
method of analogue modelling was virtually complete. 

During calculations the subprogramme ‘Inter- 
pretation’ provided printing of the location at the time 
of the prescribed temperature 0 = idem thus making 
it possible both to calculate the rate of isothermal 

surface migration and to graphically interpret the 
course of isothermal surfaces in the coordinates 

(1 - 5) - Fo. Figures 4 and 5 show this interpretation 
for 9, = 0.5 at Sk = 0.2 and Sk = 1 .O, respectively. 

The results of calculations indicate the onset of 
the stage of regularized thermal kinetics with time- 
unchangeable local velocity of the migration of iso- 
thermal surfaces in the body 0 = idem which is con- 
firmed by the presence of equidistant portions of the 
lines of different Q = idem in Figs. 4 and 5. The region 

of regularized thermal kinetics is first formed in the 
central plate sections and then it expands with time. 

Steady-state thermal kinetics under the boundary con- 
ditions of the radiation law at T, = const. is, first, a 
quasi-stationary thermal regime which then changes 
over to a regular thermal regime of the first kind. In 

this case in the central plate section, 0 < 5 < 0.25, 
the velocity of the migration of isothermal surfaces 
coincides with that determined by equation (11,) 

w 0.6 - 

I 

0.4 - 

0 1.0 2.0 

Fo 

FIG. 4. Isotherms in an unbounded radiation-heated plate at 
9,, = 0.5 and Sk = 0.2. 

I 
0 0.2 0.4 0.6 

Fo 

FIG. 5. Isotherms in an unoounded radiation-heated plate at 
9, = 0.5 and Sk = 1 .O. 



The laws of heat kinetics regularization found from 
computer calculations are important for determining 

the thermophysical properties of the body material 
since realization of boundary conditions by the radi- 
ation law is simple and it is often used in research 

work. 
In fact. measuring the velocity of migration of the 

isothermal surfaces i’ in the plate central section, 
0 ,< [ < 0.25, WC find thermal diffusivity by the equa- 

tion 

The use of this equation does not require knowledge 

of the temperature of a radiation T, or of heat fluxes 
and it is not limited by any conditions imposed on 
their values, rate of variation, etc. 

The obtained laws of the migration of isothermal 
m-Faces under non-linear boundary conditions by the 

radiation law may also form the basis for improving 
the calculations of temperature fields, as is shown in 

ref. [lo]. 
It should be emphasized that the considered radi- 

ative heating of a plate at r, = const. is a monotonous 
process. consequently, in any process of monotonous 
heating (cooling) of a body under non-linear bound- 
ary conditions regularization of heat kinetics takes 
place with the fixed regularity and time-invariable 

local velocity of the migration of isothermal surfaces. 
at least in the central portions of bounded bodies. 
This conclusion is in full conformity with the results 
obtained in Sections 2 and 3. 

6. THE LAWS OF THE MIGRATION OF 

ISOTHERMAL SURFACES IN BOUNDED 

BODIES WITH TEMPERATURE-DEPENDENT 

THERMOPHYSICAL PROPERTIES 

The consideration of the above-mentioned case is 

very important for thermophysical practice. Here a 
non-stationary one-dimensional temperature field 
in the bodies of the simplest configuration--plate 
(yiz = 1). cylinder (m = 2). sphere (m = 3)-is found 
from the solution of the differential equation 

T > 0, 0 < .‘i < lo (19) 

with the corresponding boundary conditions. 
Application of the technique formulated in Section 

2 to the presentation of the unknown solution in the 
form of equation (2) 

gives the function A 2,,(7) in the form 

A6(r) and A%(Z) are calculated analogously. 
It must be emphasized that in the expressions 

obtained for A *n(r) the body material thermophysicai 
properties a, i, c and their derivatives with respect to 

T are found at the temperature of the body symmetry 
centre A,(z) at the given time instant z. 

In the case of a quasi-linear equation (19) in 
formula (3) for the determination of the velocity of 

the migration of isotherms 

x I, 
1: = 1 A;,(r)P/2 c nA,,,(+? 

I!=” ,>= I 

it is difficult to judge, without additional assumptions 
about A?,(t) and A;,(r), the convergence of the 
denominator and numerator. 

At small x, assuming A,,,(z) and A;,(r) (and thus 

dlnC(T)/dT and dlnJ.(T)/dT) to be limited, we 
obtain 

L’ Z [A;(r) +.u2A;(z!]i[2X4 2(r) +4s~A,(tf] (3’) 

or 

/I &? A’,(z)/2.&42(5). (3”) 

With allowance for equation (20) for Al(r) relation 
(3”) changes to 

(3”‘) 

where a(T) is the thermal diffusivity of the body 
material at the temperature of its centre at the time 
instant t when velocity u is calculated at the point x 
near the body symmetry centre. 

Thus, it is proved. in particular, that in the central 
portion of bounded bodies the velocity of the 
migration of isothermal surfaces depends on the ther- 
mal diffusivity a(T) = n(T)/C(r) rather than on 
C(T) and n(T) separately. 

The latter may be also revealed in the analysis of 
equation (19) in the range of small 5. 

Relation (3”‘) forms a theoretical basis for the tech- 
nique of determination of thermal diffusivity of body 
materials a(r) during one test without any restrictions 
on the rate of temperature field variation in a body 
and, consequently, to the form of the boundary con- 
ditions. 
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7. MIGRATION OF ISOTHERMAL SURFACES 

ON THE PERIPHERY OF BOUNDED BODIES 

It is generally known that use of operational cal- 
culus based on Laplace transforms with respect to 
time variable allowed Luikov to show that at small 
times temperature variations on the periphery of 
bounded bodies with constant thermophysical proper- 
ties correspond to regularities of semi-bounded bodies 
[23]. It is natural that the velocity of the migration of 
isothermal surfaces in bounded bodies will coincide 
in this case with that for semi-bounded bodies. 

Thus, in a particular case of a half-space with the 
same initial temperature and time-constant tem- 
perature on a bounding surface obtain, based on ref. 
[23], the equation of the migration of isotherms 

where Q(0) = erfc-‘8 is the function inverse to the 
modified probability integral erfc U. 

It follows from equation (23) that lines 0 = idem in 
the coordinates x-7 {path-time) corresponds to the 
upper branch of the square parabola. 

60 

.,' 
al 

4.0 

In the coordinates .Y-~~(RX) the course 6’ = idprpl is 
obtained in the form of straight lines beginning from 
the coordinate origin at the angle to the abscissa axis 
whose tangent is equal to 2@(o), because equation 
{23) yields 

FIG. 7. Isotherms in a half-space at Bi = 10. 

and, proceeding from the physical sense of the process 10.0 

x = z@,(e)&+ (24) 

To compare with a half-space, the correspond- 
ing results for an unbounded plate (and any 
other bounded body) with the first-kind boundary 
conditions should be interpreted in the coordinates 
(l,-x) or (lo-.x)-d(a7) (in a dimensionless form, in 
the coordinates (1-l)-Fo or (l-&J@)). 

It is easy to see that in Fig. 1 for an unbounded 
plate with constant the~ophysical properties at the 
same initial temperature and symmetric development 
of a temperature field of surface heating with the 
constant temperature the initial portions of isotherms 
0 = idem correspond to the upper branch of the 
square parabola in the coordinates (I-&J(Fo) in 
Fig. 6. 

FIG. 8. Isotherms in an unbounded plate at Bi = 10. 

The same coincidence is found in ref. [7] for a half- 
space and the periphery of an unbounded plate 
between the velocities of the migration of isotherms 
0 = idem and for the third-kind boundary conditions. 
Computer calculations show that at constant ther- 
mophysical properties the initial sections of the lines 
0 = idem in a plate to the moment when the entire 
body is involved in the stage of the regular thermal 
conditions up to the sections with the regularized 
kinetics of heating correspond to the thermal laws 
of a half-space. Figures 7 and 8 present the results 

of these calculations at Bi = 10 for a half-space in the 
coordinate system B~~-~~~~/(F5~) (Bi, = xx/A, 
FQ, = ax/.x”) and for an unbounded plate in the diag- 
ram Bi (I - 5) - BiJ(Fo)(Bi = c&,,‘1, FQ = a~/@. 

The proof of the fulfilment of the ‘half-space period’ 
regularity for the temperature-dependent thermo- 
physical properties of the body material was based, as 
well as in the case of a linear problem, on a numerical 
experiment. Here, using the Crank-Nicholson 
scheme, the problem of symmetrical development of 
a temperature field on an unbounded plate with the 
same dimensionless temperature 6’(<, 0) = 0 at time- 
constant temperature Q(< = 1, PO) = 1 on bounding 

IO 0 
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0.6 
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I 

- 04 

0.2 

0 0.25 0.50 

JFO‘ 

FIG. 6. Isotherms in an unbounded plate when Bi -+ cm. 

8.0 

Bi, e 

0 2.5 5.0 



N. M. T~IRELMAN 

0.6 

Y 

0.4 

FIG. 9 

0 0.1 02 03 0.4 0.5 0.6 0 0.04 0.06 0.12 0.16 020 0.24 

VG E 

Isotherms in an unbounded plate at ii = 
,Z((e) = (I -/JO)’ at fi = 0.50. 

surfaces was solved on a computer by the grid method. 
Omitting the details stated in ref. [ 151 it is shown that 

the volumetric heat capacity of the body material 
was assumed to be constant (c = C/C,, = 1) and the 
thermal conductivity X(G) = A(G)/&, and, conse- 

quently, the thermal diffusivity Z(G) = a(G)/& are 
dependent on G (the values of A,,, Co, ug = &/C, are 
taken at G = 0) as 

ii(G) = z(G) = 1 +/?G (25) 

a(@) =x(G) = (I-@--‘. (27) 

Note that, according to the opinion of the majority 
of researchers, a real form of X(G)(a(G)) for many 
materials is close to linear or experlmental laws. 

Besides the calculation of the values of S(<, Fo) the 
program ‘Interpretation’ was created that provided 
the search of the prescribed values of G at the fixed 
points of space on each time layer. The number of 
time layers, on which the mentioned values of 0 were 
determined, are shown in Table I. The correctness 

of the algorithm of the basic problem solution was 
confirmed by the test problem of Samarsky and Sobol 
[29] for a section with l(G) = n(G) = 0.5G2. 

In Figs. 9 and 10 the graphs are presented of 
some computer solutions for a plate. when 
Z(G) = x(G) = (1 - BG) ’ at b = 0.50 and 0.90, in the 
coordinates (I-if)-JfFo), where (1-e) is the length 
from the body outer surface, Fo = uor/(lo-x)’ is the 
Fourier number constructed using the value of ther- 

mal diffusivity at t) = 0. 
The results of computer calculations indicate the 

fact that in the periphery portions of a plate and in a 

0.6 
w 
I 

0.4 

FIG. 10. Isotherms in an unbounded plate at E(Q) = 
I(@) = (I -/@-’ at p = 0.90. 

half-space for whit?, in particular, with relation (27) 
there is the Fujita algorithm [26] for obtaining an 
accurate solution, the values of the isochrones 
[ = (I -f)/2,/(Fo) coincide for G = idem (in Figs. 9 
and 10 the tangent of the inclination angle of the 
rectilinear portions of the lines G = i&m coincides 

with the doubled value of c given in Table 1). 

8. SPECIFIC FEATURES OF THE KINEMATICS 

OF TEMPERATURE FIELDS IN A HALF-SPACE 

WITH TEMPERATURE-DEPENDENT 

THERMOPHYSICAL CHARACTERISTICS 

It was interesting to compare temperature fields in 

a half-space for diKerent characters of the dependence 
of thermcphysical properties on temperature. The 
fact, that at any a = a(G), as is shown in refs. [23, 301, 
the values of isochrones < = x/Z,/(a,,z) are the argu- 
ments for 0, forms the basis for this comparison. It 
allows one to easily systemauze the solutions of 
boundary value problems for a half-space, the exact 
solutions of which are found only for some forms of 
a = a(G) by Fujita (in ref. (5]), Crank 911, Friedmann 
[32]. In Tables 2 and 3 the temperature fields in a half- 
space obtained by a computer are interpreted in the 
form of G-to-c relations for monotonous relationships 
of thermal diffusivity 

a(U) = rro(l +BGt. 

a(@ -= u0 exp (BG), 

n(H) = &(I -/XJ-z, 

u(G) = uO(l -be>-’ 

(28) 

(29) 

(30) 

(31) 

Table 1. The values of isochrones for n(o) = x(e) = (I- /3@) _ ’ obtained by a computer 
-- 

Isochrones [ = x/2J(a,s) for 0 
-- _..- _._~.__ .--- _~~. -.-- -- --... 

B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.50 1.536 1.299 I.127 0.979 0.838 0.698 0.551 0.39 f 0.211 
0.80 2.158 1.964 1.818 1.684 1.546 I .392 t .208 0.966 0.612 
0.90 2.797 2.639 2.519 2.406 2.287 2.148 1.969 I .706 1.238 
0.95 3.560 3.43 I 3.405 3.328 3.312 3.084 3.027 2.806 2.205 

- _.... - -~.---._-.-~._ 
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Table 2. The values of isochrones for ii/a, = 1.5 

Isochrones [ = x/2J(a,t) for Z(Q) 

Temperature 
8 H=l 

ci= 1+/W, i= (1-be))‘, d= (l-jtI_‘, 6 = exp (/%I), 
p = 1.00 p = 0.5828 /I = 0.3333 B = 0.7626 

0.05 1.3895 1.6003 1.5724 1.6036 1.6081 
0.1 1.1635 1.3858 1.3708 1.3613 1.3664 
0.2 0.9020 1.1164 1.1061 1.1055 1.1082 
0.3 0.7323 0.9469 0.9440 0.948 1 0.9483 
0.4 0.5940 0.7938 0.8024 0.7983 0.7964 
0.5 0.4768 0.6556 0.6716 0.6662 0.6622 
0.6 0.3709 0.5248 0.5477 0.5408 0.5349 
0.7 0.2727 0.3961 0.4229 0.4143 0.4073 
0.8 0.1794 0.2673 0.2934 0.2846 0.2777 
0.9 0.0890 0.1360 0.1543 0.1478 0.1429 
0.95 0.0444 0.0688 0.0795 0.0755 0.0726 

Table 3. The values of isochrones for ci/a, = 2 

Isochrones < = x/2J(a,r) for Z(0) 

Temperature d= 1+/M, d= (l-/W-‘, c= (l-be))‘, d = exp (be), 
0 lY= I p=2 /I = 0.8 1 = 0.5 /Y = 1.2564 

0.05 1.3895 1.8015 1.7200 1.7200 1.7401 
0.1 1.1635 1.5592 1.5227 1.5349 1.5481 
0.2 0.9020 1.2827 1.2578 1.2684 1.2796 
0.3 0.7323 1.120 1.1008 1.1050 1.1093 
0.4 0.5940 0.9536 0.9723 0.9690 0.9654 
0.5 0.4768 0.7954 0.5412 0.8303 0.8200 
0.6 0.3709 0.6448 0.7109 0.6921 0.6753 
0.7 0.2727 0.4917 0.5737 0.5482 0.5262 
0.8 0.2794 0.3350 0.4209 0.3900 0.3668 
0.9 0.0890 0.1719 0.2370 0.2108 0.1931 
0.95 0.0444 0.0872 0.1279 0.1101 0.0994 

at different values of ti/ae calculated as integral- 

mean relative thermal diffusivities within the range 

fIe[O; l] which are l+p/2, (expfi-I)//?, (l-/?-l, 

-[In (l -/3)1/p for equations (28)-(31), respectively. 

2.0 
(I b c d 

The comparison of [ at C/a, = idem in Tables 2 

and 3 shows that within the range 1 < G/a,, < 1.5 the 
arguments [ for the quantities 0 = idem -0~ [0.05 ; 
0.601 at G/a, = idem do not differ greatly. Note that 

at the value ti/ao = 1.5 there correspond successfully 
maximum relative thermal diffusivities a,,,,,/~, equal 

to 2.0; 2.14; 2.25; for equations (28)-(31). These 
variations of thermal diffusivity with the growth of 
temperature should be assumed to be very strong (for 
the cases corresponding to equations (28)-(31) they 
are shown graphically in Fig. 1 1), covering the behav- 
iour of G(0) for a considerable part of known 
materials. 

‘i 
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FIG. 11. Relations for d(0): (a) ri = 1 +pO (b = 1); (b) 
d = exp (Be) (/3 = 0.7626) ; (c) 6 = (1 -be))’ (j = 0.3333) ; 

(d) d = (1 -/%I)’ (B = 0.5828). Thus, for many of the materials applied in practice, 
the thermophysical properties of which are described 
by relations (28) and (29), the temperature field of a 
half-space is determined, with acceptable accuracy, 
by the familiar exact solution of the corresponding 
problem with functions (30), (31) at Z/u,, = idem 

(1 < a/u0 < 1.5). 
Analysis of Tables 2 and 3 indicates also high sen- 

sitivity of temperature field determination to the tem- 

perature relation d = C(Q) thus making the problem 
of finding the latter with great accuracy urgent. 

The results obtained led to the conclusion that 
under the first-kind boundary conditions the cal- 
culation of temperature fields on the periphery por- 
tions of bounded bodies as well may be substituted 



by the salutinn ol‘a non-lincar problem for ‘identical’ 

half-space when non-linear partial dit&xcntial prob- 

lems may be reduced to partial eyuations. \+hosc snlu- 

lion is casicr to be obtained, or when it is possible. in 
some cases. to make special substitutions, to come to 

linear problems [33, 341. In those specific cases M-hen 

1 < rS,~tr,, < I .S one can find temperature ficfds on the 
periphery portions of an unbounded plate with linear 

and exponential relations (2X). (79) for c/(O) using 
accurate solutions for the half-space with or deter- 

mined according to (30) or (31). 

It is cfcar that all of the above-obtained results arc 
valid also for the cast Iq(0) # I if 11’ = ly, ?(0)d0 is 

taken instead of 0. 
Thus. it may be confirmed that the t~rnp~~t~lre 

ticid is formed on the periphery portions of bounded 
bodies following the laws of an ‘identical’ (in the sense 

of coinciding thermophysical properties) half-space at 
the first-kind boundary conditions. In fact, according 

to (70) at jr = 0.9 the value of z(t))[a(O) at ? = I] 
grows from I at 0 = 0 to 100 at 0 = I and even in 
the case of such a strong variation of thcrmophysical 

properties the laws of a half-space arc valid. 
Moreover. in this case the laws of the ‘period of a 

half-space’ cover a great portion of a bounded body 
(Fig. 10). 

9. CONCLUSION 

The consideration of the process of non-stationary 
heat conduction in terms of the migration of iso- 
thermal surfaces allows one to find equations for 
determining the velocity of their migration in a half- 

space and in bounded bodies at constant and tem- 
perature-dependent thcrmophysical characteristics of 
a material. In the analysis of these formulae a new 
common feature of thermal kinetics regularization 
and specific features of isotherm migration in central 
portions of bounded bodies as well as near their outer 
surfaces are found that are important for thermo- 
physical applications. 
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METHODE DE LA MIGRATION DES ISOTHERMES DANS L’ETUDE DU TRANSFERT 
DE CHALEUR ET DE MASSE EN THEORIE ET EN PRATIQUE-I. CINEMATIQUE 

DES CHAMPS DE TEMPERATURE 

R&sum&Le mkcanisme de la conduction thermique variable dans les corps avec ou sans transition de 
phase de la substance est consid& en terme de migration des surfaces isothermes. Les t-quations sont 
donnkes pour dkterminer la vitesse de leur mouvement dans un demi-espace et dans les corps finis avec des 
propri&s thermophysiques dkpendantes de la temptrature. On trouve dans ce cas un nouveau com- 
portement commun de la rtgularisation cinttique thermique qui est indkpendant de la vitesse du mouvement 
des isothermes. L’indbpendance dans les zones centrales des corps limit&s vis-i-vis de la situation thermique 
de leurs surfaces externes est aussi constatke. On considkre l’effet des conditions aux limites 
non linkaires sur la cinittique des champs de temptrature avec rayonnement. Les r&gularit&s et les traits 
spkcifiques de la formation des champs de tempkrature constituent la base pour l’identification du coefficient 

de transfert thermique et pour la dkpendance de la diffusivitt- thermique vis-i-vis de la temptrature. 

DAS VERFAHREN DER ISOTHERMENWANDERUNG IN THEORIE UND PRAXIS 
DER FORSCHUNG AUF DEM GEBIET DER WARMEUBERTRAGUNG-I. 

KINEMATIK VON TEMPERATURFELDERN 

Zusammenfassung-Der instationire WlrmeleitprozeD in Korpern mit und ohne Phaseninderung der 
Substanz wird mit Hilfe von Ausdriicken fiir die Bewegung isothermer OberflPchen erfaI3t. Die Gleichungen 
werden abgeleitet, urn die Bewegungsgeschwindigkeit der Isothermen innerhalb eines Halbraumes und 
begrenzter K&per zu bestimmen. In diesem Fall wird eine neue allgemeine Eigenschaft thermodynamischer 
GesetzmiDigkeiten gefunden, welche unabhSngig von der Fortpflanzungsgeschwindigkeit der Isothermen 
beziiglich der Zeit ist. Weiterhin wird such die Unabhgngigkeit dieser Grade im lnneren begrenzter 
K&per von der thermischen Situation an deren Oberflkhe gezeigt. Dabei wird der Effekt nicht-linearer 
Randbedingungen auf die Dynamik von Temperaturfeldern durch das Strahhmgsgesetz beachtet. Die 
gefundenen GesetzmlBigkeiten und spezifischen Eigenschaften der Ausbildung von Temperaturfeldern 
bilden die Grundlage zur ldentifikation des Wlrmeiibergangskoeffizienten und der TemperaturabhCn- 

gigkeit der Temperaturleitftihigkeit. 

METOH IIEPEMEmEHM% M30TEPM B TEOPkIki ki l-lPAKTkiKE MCCJlEJ.(OBAHl4R 
TEl-IJlOMACCOlTEPEHOCA-I. KHHEMATMKA TEMl-lEPATYPHblX IIOJlE$‘i 

AloloTaqnn-npouecc HecTaueoHapHoii TeIIJIOnpOBOAHOCTH B Tenax 6e3 l#la3oBoro Ii c +a30BbIM nepe- 
XOnOM BU.LIeCTBa paCCMOTpeH B TepMBHaX IlepeMeUeHHIl H30TepMIiWCICHX nOBepXHOCTefi. BbIBeneHbI 
@OpMyJIbI &WI 0npeneneHun CKOpOCTH HX nepeMemeHan B IIonynpocTpascTBe H B OrpaHHqeHHbIX Tenax 
npa nocToKBHbIx H npe 3aBHcKmHx OT TeMnepaTypbI Tenno@H3HqecKHx XapaKTepacTaKax. npu 3~0~ 
yCTaHOBJTeH HOBbIii 06mii npH3HaK peryJIbKpH3aIIHH TeIIJIOBOti KHHCTBKB, 3aKJIIO’IaIOIIIHiiCB B He3aBH- 
CllMOCTH CKOpOCTH IlepeMeIlIeHIin HJOTepM OT BpBMeIWi. BbInBJIeHa TaKme He3aBHCHMOCTb 3TOfi BeJIIi- 
‘IHHbI B ueHTpa,IbHblX ‘IaCTIIX OrpaHWIeHHbIX Ten II OT TeIIJIOBOti 06CTaHOBKH Ha WX HapymHOfi 
nOBepXHOCl_H. PaCCMOTpeHO BJIHIlHHe HeJIHHeiiHbIX I-paHWYHbIX yCJIOBHti n0 3aKOHy Ii3JIyreHIin Ha KHHe- 
MaTHKy TcMIIepaTypHbIX nO,Iefi. YCTaHOB,IeHHbIe 3aKOHOMepHOCTIi II OCO6eHHOCTH IjlOpMUpOBaHUK TCM- 
nepaTypHbIX nOJI& nOJIOXCeHb1 B OCHOBy AfleHTH@iKaUHU K03~@UieHTa TUIJIOOT~a’IA Ii 3aBHCHMOCTB 

K03+@IuHeHTa TeMncpaTypOnpOBOnHOCTU OT TeMnepaTypbI. 


