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Abstract—The process of unsteady heat conduction in bodies with and without phase transition of the
substance is considered in terms of the migration of isothermal surfaces. The equations are derived to
determine the velocity of their motion in a half-space and in limited bodies at the thermophysical charac-
teristics which are dependent on temperature. In this case a new common feature of thermal kinetics
regularization that is independent of the velocity of the isotherms motion of time is found. The independence
of this quantity in central parts of limited bodies of a thermal situation on their outer surfaces is also
revealed. The effect of non-linear boundary conditions on the kinetics of the temperature fields by the
radiation law is considered. The regularities and the specific features of temperature fields formation found
form the basis for the identification of the heat transfer coefficient and the dependence of thermal diffusivity
on temperature.

1. INTRODUCTION

ON soLvING linear and non-linear problems of the
heat and mass transfer theory, on determing the ther-
mophysical characteristics of the body material under
conditions of its heat exchange with the surroundings,
a non-traditional treatunent of the studied phenom-
enon turns out 1o be useful. As will be shown, the
idea of considering the process of non-stationary heat
conduction in terms of the migration of isothermal
(isopotential) surfaces rather than in terms of spatial-
temporal temperature variation proves to be fruitful.
In this case the problems of non-siationary heat con-
duction with and without phase transition are com-
bined, it appears possible to find a number of new
regularities of the processes studied and new ways are
opened for solving non-linear problems.

Such an approach was shown when studying mass
transfer in capillary-porous bodies [1, 2]. In the then
published paper by Dix and Cizek [3] the one-dimen-
sional equation of heat conduction in the migration
of isotherms was obtained and some problems of its
numerical solution were considered. A great series of
works [4-20] by this author made it possible to reveal,
in terms of the migration of isotherms, a number of
new specific features of non-stationary heat con-
duction that were applied to the determination of the
thermophysical properties of the body material, of the
parameters of the boundary conditions, to numerical
and analytical solutions of non-linear problems with
and without phase transition of the substance. The
problem under consideration attracts the ever grow-
ing interest of researchers [21, 22].

2. REGULARITIES OF THE MIGRATION OF
ISOTHERMAL SURFACES IN BOUNDED BODIES
WITH CONSTANT THERMOPHYSICAL
PROPERTIES

It is evident that the migration of isothermal sur-
faces in a solid body should be characterized by a
certain velocity o, the relation for which may be
obtained from the following considerations.

As is known a non-stationary one-dimensional tem-
perature field in bodies of the simplest form—a plate
(m=1), a cylinder (m =2), a sphere (m = 3)-—is
found from the solution of the differential equation
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with the corresponding boundary value conditions.

Satisfy equation (1), representing a symmetric
development of a temperature field in the form of a
series built by even powers of the coordinate x

%0 = 3 Au(0)x™. @

"

Then, bearing in mind that for an isothermal surface,
T = const., its position x in a body is variable with
time 1, calculate the differential of both sides of
equation (2)

=10 n=1

2983



2984

N. M. TSIRELMAN

a = ;/C, thermal diffusivity [m*s ]

Bi = aly//, Biot number

C, C(T) volumetric heat capacity
[Tm K

Co = 5.67 Wm~? K * emissivity of an
absolutely black body

Fo = at/l}, Fourier number

Iy characteristic dimension of a body (plate

half-thickness, radius of cylinder,
sphere) [m]

m coefficient of body shape equal to unity,
two or three for plate, cylinder and
sphere, respectively

Sk = ecyl, 710 */4, Stark number
T(x, 1) current temperature
(K]
T; temperature of surrounding medium
(K]
T, initial temperature [K]
T, radiator temperature [K]

NOMENCLATURE

o.F =rl,ja dimensional (ms ') and
dimensionless velocities of migration
isotherms

X coordinate {m].

Greek symbols

o coefficient of heat transfer [Wm 2K ™'}

& emissivity of body surface

0 = (T(x, 1) =T)/(T:—T,),
3 = T(x,1)/T,, dimensionless
temperatures

7, #/(T) thermal conductivity [Wm' 'K ~']

¢ = x/l,, dimensionless coordinate

T time.

Mathematic symbols
Jo, Ji first-kind zero- and first-order Bessel
functions
erfcu=1—erfu=1-2 [ exp (—a°) dit/\/ ()
modified integral of probability.

whence the unknown velocity of the migration of
isotherms is

0= [a(li_x)} = Y A% @x"2 Y nds@x" .
ot T n=0 n=0

(3)

It is possible to determine A,,(7) and 4%,(z) by sub-
stituting series (2) into equation (1)

CY An@x™ =i Y 20Qn+m—2) Az (1)x >
n=0 =1
and equating the coefficient-functions A4%,(r) and
A,,(1) of the left- and right-hand sides of this equation
at the same powers of x.
In this case we obtain first

A(1) = CAY(T)2mlA = AL (1)2ma @
and then, using equation (4),
A4(1) = A5(1)/8(m+2)ma?,
Ae(r) = Ay (0)/48(m+4)(m+2)ma’

etc.

As aresult, it is not difficult to show that the velocity
of the migration of isotherms, determined by equation
(3), 18

ma
D=
X
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where

n—1
S\ (m,n—1y = ] 2k(m+2k—2),
k=1

|

Sy(m,n—1) = [] 2k(m+2k).
k=1t
It follows from equation (2) that the function A,(1)
coincides with the dependence of the temperature of
the body centre of symmetry, 7(0, 7), on time.

The analytical function 4,(r) may be approximated
by a power series. Then, in view of the fact that the
partial sums of factorial series S,(m, n—1) and
S,(m,n—1) grow with n -» oc faster than the partial
sums of any power series the conclusion that in this
case the series in the numerator and denominator
of equation (5) everywhere converge according to
D’Alambert is reached.

In fact, taking, for example, the dependence of the
temperature of the body centre of symmetry as an
exponential function of time A4,(1) ~ exp (ar) we
obtain a particular case of the series in equation (5)

a ‘Z exp (at)(ox?/a)" /S (m, n—1)x?

n=2

and

a ¥ exp(at)(ax?/a)"/Sy(m, n—1)x>

Calculating for the first of the series the limit of the

nth to (n— 1)th terms ratio, we have for n —» o«
|oux?/a

A D) m+2n—4)
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i.e. the mentioned series really converges everywhere
by x. An analogous conclusion also refers to the
second series considered.

Allowing for the fact that the case of heat propa-
gation with infinitely high velocity is analysed, it is
assumed that for 1 > 0 Ay(1) # 0, so the conclusion
on the existence of v determined from equation (5) is
derived.

Formula (5) in the case of linear time—variation of
the temperature of the body centre of symmetry
(quasi-stationary thermal conditions) 4,(z) ~ 7 gives
the relationship for determining the velocity of
the migration of an isothermal surface

v = majx, (6)

which is obtained also as a result of the analysis of
familiar partial solutions [23] for constant heat flux
density in the bounded body surface (the second-kind
boundary condition) or as a result of the linear time—
variation of temperature in it [24].

With the variation of the temperature of the sym-
metry centre over the decaying exponent (a regular
heat mode)

Ao(t) = fexp(—ar), a>0

based on equation (5) we come to the following
relation for the calculation of the velocity of the
migration of isotherms

y —oax?2ma+a*x*/8(m+2)yma® — -
1—ax?2(m+Da+o’x*8(m+H(m+2)a* — -+~
(59
Having introduced the variable y = x./(¢/a) and

making use of the known expansions of the function
into Taylor’s series, transform equation (5°) as

(@) atm=1
i (= D'y* 2 (2n—2)
[
v=— X5
AP CR Ve Ea L IE]
n=1
- g X : s(i;: SV;;} = ay ctg y/x, )
(b) atm=2
LTG0
p=—X m":
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(c)atm=3
< —1"’2"_2 2 _1;
3a ,.;( Yy 2n-1)
v=— X
Y3y pPYen—1)12n+1)
n=1
_ 3a N —sin yfy
T x 7 3(ycosy—siny)’fy
2sin
- (55

T " x(ycosy—siny)’

It is not difficult to show that at « = au?/I} obtained
from equations {57), (5%). (5%) the following dimen-
sionless velocities of the migration of isotherms exist

0 =vlyja= [a(;l;é)]r:

(ay m=1
7= p, ctg i, &, (5

by m=2
U= o1 M (119, (52)

{(c) m=3
&= pi/C7" —p otg 1), (5%)

where u, is the first positive root of characteristic
equations of the problem of non-stationary heat con-
duction with the boundary conditions of the third-
kind at constant Bi that with a symetrically developing
temperature field have the form

(@ m=1
1= Bifctg y, (7))

bym=2
= Bil (i)} (1), (7)

(c) m=3
p=(1-Bictg p. (75)

The same formulae are also obtained with the
corresponding consideration of the relation

g =320

T—T, =1—A X1 (Fo), (8)

describing a symmetrical one-dimensional tem-
perature field at the stage of a regular heat mode. In
equation (8) 4, ,, is the first thermal amplitude which,
in the case of the third-kind boundary conditions, is
equal to 4, = 2/p,, A\ 5= 2u,J (1), 4,3 =2/p,;
Y 1.(&) is the coordinate function of the form

Y2 = Jo(11:8),
Yz = sinp &g )

X1 = COS 1y,

and the time function
¥ (Fo) = exp (—uiFo).
In fact, taking logs of equation (8) and then differ-
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cnuiating both sides with respect to Fo at U = idem,
the equation shown is obtained

i ‘7@,‘,75)] __
- cFo J¢,~ H

based on equation (9), particular cases (57)-(5%) as
well.

Figure 1 illustrates, based on the corresponding
computer calculation, the course of the lines () = idem
in the coordinates (1 —¢)— Fo (the passed length—
time) at Bi = o for a plate. This figure indicates the
fact that equidistant portions of the lines correspond
to the period of regular thermal conditions describing
the course of different isotherms () = ident (shown by
a dashed line).

Using the known relations for the description of
temperature fields in the bodies with constantly oper-
ating uniformly spaced heat sources |23] as a basis
and considering 7'(x,t) from the non-equilibrium
temperature of a stationary state we find also that in
this case the velocities of the migration of isotherms
7 on the stage of regularized thermal kinetics are cal-
culated by equations (57)—(5%) and are independent
of the power of the heat sources. It is also not difficult
to prove that under the eftect of an instantancous heat
source symmetricaily located in a body the relation-
ships (57)—(5%) are preserved, i.e. the value of ¢ is
dependent in this case neither on the power of an
instantaneous heat source nor on its position in a
body.

Thus, the following common feature of thermal
kinetcs regularization may be inwoduced [7]: in
bounded bodies with constant thermophysical prop-
erties the dimensionless veiocity of the migration
of isothermal surfaces in the periods of regular
and quasi-stationary thermal conditions depends
only on the coordinate of the body point and the
kind of boundary conditions (the initial condition
T, = const. may be omitted in the majority of cases).

The formulated feature of thermal kinetics regu-
larization is independent, along with the familiar
characteristics of Dulnev and Kondratiev, of regu-
larization by temperawure fields [25] and, with the
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FIG. 1. Isotherms in an unbounded plate with B8i — o,
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Luikov principle, of regularization by heat fluxes that
gencralize the above ones [23].

3. SPECIFIC FEATURES OF THE MIGRATION
OF ISOTHERMAL SURFACES IN CENTRAL
PORTIONS OF BOUNDED BODIES

Consideration of correlation (5) for thc deter-
mination of the velocity of the migration of isotherms
indicates that the assumption on the boundedness of
the derivatives A4$"(t) higher than the first-order of
the body centre temperature with respect to time and
on the smallness of x(x — 0) gives the equation

(1)

Thus, it wwrns out in these assumptions that the
velocity v in central parts of the bounded bodies is
independent of the character of the thermal condi-
tions on the bounding surfaces.

In fact, equation (10) fully coincides with relation
(6) for the parts of the body participating in quasi-
stationary thermal conditions when the temperature
of the body symmerry centre changes with time by a
linear law that is provided by the case of the second-
kind boundary conditions.

Now to reveal whether relation (11) is valid for the
stage of reguiar thermal conditions when third-kind
boundary conditions are assigned on the body surface,
and what is the length of the body central part in
which this relation is fulfilied.

In the obtained relations (57)—(5%) and in formula
{(10), correlating therm, for rcgular thermal conditions,
the first root of the characteristic equations (7,)—(7;)
depends on the value of the Biot number, Bi, and,
therefore, one may speak of the fact that the velocity
'is determined, to a certain exient, also by the thermal
conditions on the bounding surface of the three sim-
plest bodies (plate, cylinder, sphere) under con-
sideration. To reveal the character of this relation,
computer calculations of the values of ¢ at ditfcrent Bi
were made ; the graphic presentation of the calculation
results for a plate and a sphere with Bi — o and
Bi = 0.01 arc given in Fig. 2 (lines a. b correspond to
Bi — oc and Bi = 0.01 for a plate, lines ¢, d correspond
to Bi — oo and Bi = 0.01 for a sphere).

The most interesung result of the calcuiations is the
fact thai the velocity ¢ is pracucally independent of
the value of the Biot number, Bi, that is valid, as is
seen [rom Fig. 2, for centrai paris of bounded bodies
0<E<025.

The last indicates the inaependence of ¢ in the
mentioned region of the bodies of the thermal con-
ditions on their outer surface and may be proved
analytically.

It 1s known that g, is always finite—-p, < n. Then,
for such small ¢s (for small w,&), that tg p, & =~ u, <,
we have for an unbounded plate instead of equation

(57)

U= mda;x.

n
=

= ctgpu g ()
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FiG. 2. Velocity of isotherms migration in a plate (lines a, b)
and in a sphere (lines ¢, d) at Bi = 0.01 (lines a, ¢) and
Bi — oo (lines b, d).

The velocity # in the central section of a cylinder,
when g, & « 1, may be calculated proceeding from the
fact that in this case the first-kind Bessel function J,
for v > 0 is represented as [26]

J(ui) = v+ D(p,§/2)°

(' is the gamma function), so that in equation (5%)
for ¢ the following simplifications

&= o, /1 (1, O
= (DT (/i E/2)' T2y =218 (11y)
are obtained. Velocity ¢ in the sphere central portion
may be calculated based on equation (5%
F= /(& "—pcg &)
= p, /(Y& —cos p &fsin p, §)

and on the known Taylor series expansion of sine and
cosine functions

sinp, & = Ivllé_(,ulé)B/:”+[(/‘16)5/5!]‘P|(ﬂ1'§)7
cos iy & = 1= (1, )21+ [(11, &) /402 (1, ).

Then we have in the denominator of equation (5%

L_cosulfzu_]é N3}
& sinpE 3 o
where

14311920, /51— (118) * @o/4!

1= (&) 31+ (1O e, /5!
Note that the functions @, (¢, &), (1, &), @1(u, &) are
analytical and ¢ ,(0) = @,{0) = ¢;(0) = 1.

As a result in the central portion of a sphere (when
E« lorpu,é—0)wehave

&= /(i é/3) = 3/¢. (113)

The independence of ¢ is determined according to

ps(&) =
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equations (57)—(5%) of the thermal conditions on the
outer boundary of the body follows also from the
easily proved relationship

b, =0

for the central parts of a body, when p,£ — 0.

[t should be, of course, noted that under the regular
thermal conditions, when the body temperature time
variation is described by a simple exponent, the allow-
ance for relationships (11,)—(11;) leads to the con-
clusion on the elliptical temperature distribution
along the coordinate that for fixed Fo when heated
has the form

0= 1—F(m,p)(1-pi*jm)'"?. (12)

In fact, equations (11,)—(11;) with the exponential
dependence of temperature on time may be obtained
for small & or u, & only with the following description
of the temperature field

0 =1—4A,,exp(—piFo)(1 —puitim)"*. (13)
Actually, taking logs and differentiating equation (13)

with respect to Fo we obtain the equation for the
velocity 7 in the form

§=m(1—pui&Im)/¢ (14)
whence at small u,¢ there follows the discussed
relationships (11,)—(11;). For an unbounded plate
(m = 1) equation (12) can be easily obtained from the
analysis of the known solution [23] and for a cylinder
and sphere—only using equations (11,), (11,). The
ellipse with the half-axes 1-0 = F(m,pu,) and
&= \/ (m)/u, is the graphic representation of relation-
ship (12).

At small values of the Biot number (B8i < 0.1) the
temperature distribution both in the central portions
and in the entire body is described by the elliptical law
(12) at the regular stage.

The above results obtained on the specific features
of bodies may be with even greater ground when
related to the cores of their components which find
wide application in engineering and thermal physics.
In the latier case they are used when thermal con-
ductivity A is determined by the method of bicalori-
meters of a regular mode (piane, cylindrical, spherical)
as well as in devices for dynamic determination of the
thermophysical properties of bodiecs. It is shown in
ref. [9] that the appiication of relationship (11) allows
the determination of the thermal diffusivity of the core
material with no limitations on the core—shell pair
in the so-called thermally insulated cores when o is
independent either of the sheil properties or the ther-
mal conditions at the bicalorimeter boundary, ctc. The
latter greatly simplifies a thermophysical experiment.

4. SPECIFIC FEATURES OF THE MIGRATION
OF ISOTHERMAL SURFACES ABOUT THE
OUTER SURFACE OF A BODY AT THE STAGE
OF REGULAR THERMAL MODE

In Section 3 the independence of 7 in the central
portion of a body at the stage of a regular thermal
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mode of the thermal conditions on its bounding sur-
face is shown. Naturally, a problem arises with respect
to the dependence of & at this surface of a body on
the thermal conditions on the surface when the region
of regularized kinetics spreads over the entire body.
It is not difficult to see that at ¢ = 1 (on the surface
flown around) equations (57)—(5%) became as follows

Fe= oy ctg iy, (15))
&= gy Jolu )/ (), (152)
F=ui/(l—p, ctg py). (155)

With allowance for the characteristic equations (7,)-
(7) relations (15,)~(15;) may be transformed to the
form valid for all of the three bodies under con-
sideration

= p3/Bi. (16)

In Fig. 3 the graph of the dependence of & = p7/Bi for
a plate, cylinder and sphere (lines a, b and c, respec-
tively) is plotted that is constructed using the data
obtained on a computer. The analysis of Fig. 3 leads
to the conclusion that # is strongly dependent on
the intensity of convective heat transfer at small Biot
numbers ; with growing Bi (Bi = 30) the mentioned
relation becomes weak.

It is easy to see that relationship (16) may form the
basis for a technique to determine the convective heat
transfer coefficient «. In fact, interpreting the results
of the corresponding thermophysical experiment as
migration of isothermal surfaces in a heat sensing
clement we obtain a constant velocity of the migration
of isothermal surfaces # at a body bounding surface
¢ = 1 when the entire body is involved in the stage of
regular thermal mode, and then using a computer
and based on relations (7,)~(75), (16) or, in case the
required accuracy of a determination is not high, we,
resorting to Fig. 3, find the unknown Biot number
Bi = aly/a. 1t is clear that in such a way the coefficient
of convective heat transfer «, that is constant in time,
may be determined. However, this method does not

3.0

20

o i [ Lok
020 1.0 10 20 3040
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FiG. 3. Velocity of isotherms migration near a surface of a
plate, cylinder and sphere (lines a, b, ¢, respectively).
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require knowledge of the surrounding temperature
and this is the obvious simplicity of this calculation
technique, and may be decisive for its practical
implementation. As has been found earlicr, there is
no possibility of determining the value of o by one
heat sensing device when not knowing the absolute or
excess value of the temperature of the liquid or gas
flow. The technique described is very important for
the determination of the coefficient of convective heat
transfer from reacting or two phase flows, in the case
of small cross-sections, etc.

It is interesting to note that when the entire body is
involved in the stage of the regular thermal mode the
notion of equivalent thermal resistance of convective
heat transfer in the process of non-stationary heat
conduction may be introduced based on the con-
sideration of successive motion of isothermal surfaces
in a body. Earlier this notion existed only for the
process of stationary heat conduction. At the known
value of this resistance the assignment of the third-
kind boundary conditions may be substituted by the
first-kind boundary conditions, which is of interest
for both the simplification of analogue modelling
of non-stationary processes and the corresponding
calculational technique. It has been shown that this
substitution is possible, at least, for the final stage of
the considered process.

The dimensionless time of isotherm migration
0 = idem on the clementary path d(1—¢)

dFo = d(1 -8/t = —d&fp
and the final time of migration 0 = idem from the

point with the coordinate £ in a body up to its sym-
metry centre £ = 0 is

i3
Fo = { déj.

At the stage of a regular thermal mode with allowance
for relationships (57)-(5%) for ¢ obtained, respec-
tively, for a plate, cylinder, and sphere

Fo = In(cos u, &)/, (17,)
Fo = InJo(u, &)/, (172)
Fo = In (sin u, /&)l (173)

For the first-kind boundary conditions, when the
equivalent thermal resistance of convective heat trans-
fer during the entire process of non-stationary heat
conduction is equal to zero, the values of 11, are equal
to n/2 for a plate, 2.4048 for a cylinder and = for a
sphere. Substitution of these values of g, into equa-
tions (17,)-(17,) and £ = 1 into the integration limits,
when the entire body is involved in the stage of the
regular thermal mode, yields Fo = . This fact cor-
responds to the infinite time of the body heating up
to the surrounding temperature (6 = 1). In this case
an isothermal surface, 6 = 1, moves in the region of
a regular thermal mode virtually all the time.

Then, in a more general case of the third-kind
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boundary ¢conditions, obtained on the basis of equa-
tions (17,)—-(17) the value of Fo — oo for some & > 1,
i.e. with the solid body ‘building-up’ by a material
with an equivalent thermal resistance to convective
heat transfer in a non-stationary process.

Based on equations (17,)—(17,) the value of £ found
that provides Fo — oo at any u, for a plate, cylinder
and sphere from the relationships

wié =2, (18))
& = 2.4048, (18,)
wmé=m (185)

whence new sizes of bodies mentioned (after
additional layer ‘building-up’) are obtained

E=n2p,, &=2.4048/y,,

Thus, consideration of the final stage of the process
of non-stationary heat conduction in a body with the
characteristic size /, under the third-kind boundary
conditions may be substituted by consideration of the
process under the first-kind boundary conditions in a
body with the characteristic size /yn/2u,, 2.4048//u,,
lynfu,. The applicability region of this substitution
was found on the basis of the corresponding computer
calculations : within the range Bie[S, co) this sub-
stitution does not distort the picture of the migration
of isothermal surfaces 8 €[0.1; 1.0], when Bie [0.004 ;
1.0] this substitution allows the admissible accuracy
only for isothermal surfaces 6€[0.9; 1.0}, i.e. only for
the final stage of body heating.

¢=mn/u. (18)

5. REGULARITIES OF THE MIGRATION OF
ISOTHERMAL SURFACES UNDER NON-LINEAR
BOUNDARY CONDITIONS

Radiative heat transfer is characterized by non-
linearity in the boundary condition for equation (1)
which at constant thermophysical properties of the
material in the dimensionless variables has the form

a9 .
~ G|, = Sk D,

Unfortunately, literature has no voluminous data
on the structure of the temperature fields for this case
which could be sufficient for the determination of the
regularities of the migration of isothermal surfaces
since they are given only for the characteristic points
of a body {27]. Therefore, the corresponding problem
on the non-stationary symmetric temperature field in
a plate with identical initial dimensionless tem-
perature 3, = T,/T, equal to 0; 0.166, 0.200, 0.333,
0.500, 0.800 at the Stark number, Sk, values: 0.01,
0.02, 0.05, 0.10, 0.20, 0.50, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0
was solved on a computer by the grid method
using the implicit absolutely stable Laasonen
scheme [28]. The space step AE = 0.1 was taken in the
calculation ; the dimensionless relative temperature
0 =[T(, Fo)—T,)/(T,—T,) was determined at the
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plate points with the coordinates ¢ equal to 1.00, 0.95,
0.85,0.75,0.65, 0.55, 0.45, 0.35, 0.25, 0.15, 0.05 at the
time step Fo = 0.02. The coincidence of the calculated
values with the data of ref. [27] obtained by the
method of analogue modelling was virtually complete.
During calculations the subprogramme ‘Inter-
pretation’ provided printing of the location at the time
of the prescribed temperature 6 = idem thus making
it possible both to calculate the rate of isothermal
surface migration and to graphically interpret the
course of isothermal surfaces in the coordinates
(1—&) — Fo. Figures 4 and 5 show this interpretation
for 9, = 0.5 at Sk = 0.2 and Sk = 1.0, respectively.
The results of calculations indicate the onset of
the stage of regularized thermal kinetics with time-
unchangeable local velocity of the migration of iso-
thermal surfaces in the body § = idem which is con-
firmed by the presence of equidistant portions of the
lines of different 6 = idem in Figs. 4 and 5. The region
of regularized thermal kinetics is first formed in the
central plate sections and then it expands with time.
Steady-state thermal kinetics under the boundary con-
ditions of the radiation law at T, = const. is, first, a
quasi-stationary thermal regime which then changes
over to a regular thermal regime of the first kind. In
this case in the central plate section, 0 < & < 0.25,
the velocity of the migration of isothermal surfaces
coincides with that determined by equation (11,)

o <] o [S) (=]
i )
1.0 2.0
Fe

[4

10.0

0.8

FiG. 4. Isotherms in an unbounded radiation-heated plate at
90 =0.5and Sk = 0.2.

10.0

[eX-]

o] 02 04 06
Fo

FIG. 5. Isotherms in an unbounded radiation-heated plate at
3y =0.5and Sk = 1.0.



2990

P 172
The laws of heat kinetics regularization found from
computer calculations are important for determining
the thermophysical properties of the body material
since realization of boundary conditions by the radi-
ation law is simple and it is often used in rescarch
work.

In fact, measuring the velocity of migration of the
isothermal surfaces ¢ in the plate central section,
0 < ¢ €£0.25, we find thermal diffusivity by the equa-

tion
a(ly—x)
a=rxx= | XX
&7 o

The use of this equation does not require knowledge
of the temperature of a radiation 7, or of heat fluxes
and it is not limited by any conditions imposed on
their values, rate of variation, etc.

The obtained laws of the migration of isothermal
surfaces under non-linear boundary conditions by the
radiation law may also form the basis for improving
the calculations of temperature fields, as is shown in
ref. [10].

It should be emphasized that the considered radi-
ative heating of a plate at 7, = const. is a monotonous
process. Consequently, in any process of monotonous
heating (cooling} of a body under non-linear bound-
ary conditions regularization of heat kinetics takes
place with the fixed regularity and time-invariable
local velocity of the migration of isothermal surfaces,
at least in the central portions of bounded bodies.
This conclusion is in full conformity with the results
obtained in Sections 2 and 3.

(1"

6. THE LAWS OF THE MIGRATION OF
ISOTHERMAL SURFACES IN BOUNDED
BODIES WITH TEMPERATURE-DEPENDENT
THERMOPHYSICAL PROPERTIES

The consideration of the above-mentioned case is
very important for thermophysical practice. Here a
non-stationary one-dimensional temperature field
in the bodies of the simplest configuration—plate
{m = 1), cylinder {m = 2), sphere {m = 3)—is found
from the solution of the differential equation

Y A —
e T -
¢ ot X" ox [x MT) t?x}

>0, O<x<l,

(19

with the corresponding boundary conditions.

Application of the technique formulated in Section
2 to the presentation of the unknown solution in the
form of equation (2)

T{x,1) = i Az (Dx>

n=1

gives the function A,,(t) in the form

N. M. TSIRELMAN

A1) = A1) 2ma(T). (20)
A5(2) dC(T)  Ax(D)A4,(D)
A= ey T AT AU Tm+)
(an
Qr
Au(r) = AN mAs) dnC(T)
A= 4Ty m+2) T 2my2) AT
. dln AT
ENETS Sl e
5 A5(1) 4T (22)

A7) and A7) are calculated analogously.

It must be emphasized that in the expressions
obtained for 4,,(t) the body material thermophysical
properties a, 4, ¢ and their derivatives with respect to
T are found at the temperature of the body symmetry
centre 4,(t) at the given time instant t.

In the case of a quasi-linear equation (19) in
formula (3) for the determination of the velocity of
the migration of isotherms

r= Z A’ (T)x>/2 Z nA,(t)x> !
n=10 n=1

it is difficult to judge, without additional assumptions
about A4,,(r) and A%.(zr), the convergence of the
denominator and numerator.

At small x, assuming 4,,(r) and 4%,(t) (and thus
dinC(T)/dT and dinA(T)/dT) to be limited, we
obtain

)

s o [ () +x2 AN (D] 2x AL (1) +4x A ()] (3)
or

v = Ay(t)/2xA4,(1). 3"

With allowance for equation (20) for 4,(z) relation
(3") changes to

. ma(T)
U= ¥

(3)

where a(T) is the thermal diffusivity of the body
material at the temperature of its centre at the time
instant T when velocity v is calculated at the point x
near the body symmetry centre.

Thus, it is proved, in particular, that in the central
portion of bounded bodies the wvelocity of the
migration of isothermal surfaces depends on the ther-
mal diffusivity a(T) = A(T)/C(T) rather than on
C(T) and A(T) separately.

The latter may be also revealed in the analysis of
equation (19) in the range of small &.

Relation (3") forms a theoretical basis for the tech-
nique of determination of thermal diffusivity of body
materials a(7T') during one test without any restrictions
on the rate of temperature field variation in a body
and, consequently, to the form of the boundary con-
ditions.
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7. MIGRATION OF ISOTHERMAL SURFACES
ON THE PERIPHERY OF BOUNDED BODIES

It is generally known that use of operational cal-
culus based on Laplace transforms with respect to
time variable allowed Luikov to show that at small
times temperature variations on the periphery of
bounded bodies with constant thermophysical proper-
ties correspond to regularities of semi-bounded bodies
[23]. Tt is natural that the velocity of the migration of
isothermal surfaces in bounded bodies will coincide
in this case with that for semi-bounded bodies.

Thus, in a particular case of a half-space with the
same initial temperature and time-constant tem-
perature on a bounding surface obtain, based on ref.
[23], the equation of the migration of isotherms

ax Ix
U o= ((:;;)9 = E ; = 2&@2(8)/’6 (23)
where ®(0) = erfc~'6 is the function inverse to the
modified probability integral erfc u.

It follows from equation (23) that lines 8 = idem in
the coordinates x—1 (path-time) corresponds to the
upper branch of the square parabola.

In the coordinates x-,/(at) the course 8 = idem is
obtained in the form of straight lines beginning from
the coordinate origin at the angle to the abscissa axis
whose tangent is equal to 20(f), because equation
(23) yields

x? = 4ar®*(6)
and, proceeding from the physical sense of the process

x = 20(6)./(a1). 24

To compare with a half-space, the correspond-
ing results for an unbounded plate (and any
other bounded body) with the first-kind boundary
conditions should be interpreted in the coordinates
(ly—x) or (lo—x)»-\/ (at) (in a dimensionless form, in
the coordinates (1-¢)~Fo or (1-&)~/(Fo)).

It is easy to see that in Fig. 1 for an unbounded
plate with constant thermophysical properties at the
same initial temperature and symmetric development
of a temperature field of surface heating with the
constant temperature the initial portions of isotherms
) = idem correspond to the upper branch of the
square parabola in the coordinates (1-&)—/(Fo) in
Fig. 6.

The same coincidence is found in ref. [7] for a half-
space and the periphery of an unbounded plate
between the velocities of the migration of isotherms
) = idem and for the third-kind boundary conditions.
Computer calculations show that at constant ther-
mophysical properties the initial sections of the lines
0 = idem in a plate to the moment when the entire
body is involved in the stage of the regular thermal
conditions up to the sections with the regularized
kinetics of heating correspond to the thermal laws
of a half-space. Figures 7 and 8 present the results
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of these calculations at Bi = 10 for & half-space in the
coordinate system Bi,—Bi./(Fo,) (Bi,=ax/i,
Fo, = at/x*) and for an unbounded plate in the diag-
ram Bi (1 — &)~ Bi\/(Fo)(Bi = aly/4, Fo = at/}).
The proof of the fulfilment of the ‘half-space period’
regularity for the temperature-dependent thermo-
physical properties of the body material was based, as
well as in the case of a linear problem, on a numerical
experiment. Here, using the Crank-Nicholson
scheme, the problem of symmetrical development of
a temperature field on an unbounded plate with the
same dimensionless temperature 8(¢, 0) = 0 at time-
constant temperature 8(¢ = 1, Fo) = 1 on bounding
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surfaces was solved on a computer by the grid method.
Omitting the details stated in ref. [13] it is shown that
the volumetric heat capacity of the body material
was assumed to be constant (€ = C/C, = 1) and the
thermal conductivity 1(8) = A(8)/4,, and, conse-
quently, the thermal diffusivity a({)) = a()/a, are
dependent on 8 (the values of 4y, Cy, 4o = 4,/C, are
taken at 0 = 0) as

a0) = £(0) = 1+ 0 (25)
a(0) = A(6) = exp (B0 (26)
a()y = N0y = (1 —po 2. @n

Note that, according to the opinion of the majority
of researchers, a real form of A(0)(d(6)) for many
materials is close to linear or experimental laws.

Besides the calculation of the values of 6(¢&, Fo) the
program ‘Interpretation’ was created that provided
the search of the prescribed values of § at the fixed
points of space on each time layer. The number of
time layers, on which the mentioned values of ¢ were
determined, are shown in Table 1. The correctness
of the algorithm of the basic problem solution was
confirmed by the test problem of Samarsky and Sobol
[29] for a section with X(0) = a(8) = 0.50%

In Figs. 9 and 10 the graphs are presented of
some computer solutions for a plate, when
) = X0y = (1—p0)~* at § = 0.50 and 0.90, in the
coordinates (1-¢)-/(Fo), where (1-¢) is the length
from the body outer surface, Fo = a,t/(l,—x)" is the
Fourier number constructed using the value of ther-
mal diffusivity at 8 = 0.

The results of computer calculations indicate the
fact that in the periphery portions of a plate and in a

Table 1. The values of isochrones for d(0) =

Isochrones
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FiG. 10. Isotherms in an unbounded plate at &(f) =
X0 = (1-phH~at f = 0.90.

half-space for which, in particular, with relation (27)
there is the Fujita algorithm [26] for obtaining an
accurate solution, the values of the isochrones
{ = (1—&)/2,/{Fo) coincide for § = idem (in Figs. 9
and 10 the tangent of the inclination angle of the
rectilinear portions of the lines # = idem coincides
with the doubled value of { given in Tabie 1).

8. SPECIFIC FEATURES OF THE KINEMATICS
OF TEMPERATURE FIELDS IN A HALF-SPACE
WITH TEMPERATURE-DEPENDENT
THERMOPHYSICAL CHARACTERISTICS

It was interesting to compare temperature fields in
a half-space for different characters of the dependence
of thermcphysical properties on temperature. The
fact, that at any ¢ = a(#), as is shown in refs. {23, 30},
the values of isochrones { = x/2,/(a,1) are the argu-
ments for 0, forms the basis for this comparison. It
allows one to easily systemauze the solutions of
boundary value problems for a half-space, the exact
solutions of which are found only for some forms of
a == a{f#) by Fujita (in ref. [5]), Crank [31], Friedmann
[32]. In Tables 2 and 3 the temperature fields in a half-
space obtained by a computer are interpreted in the
form of #-to-{ relations for monotonous refationships
of thermal diffusivity

a(ty = a,(1+ B0y, (28)
a{f)) = ayexp (BO), 29
a(f) = a,(1-6) 7, (30)
a(0) = ay(1—poH)~" 3h

A(#) = (1—p)~* obtained by a computer

= x/2.,/(a,7) for ¢

0.3

0.6

I 02 0.4 0.5 0.7 0.8 0.9
0.50 1.53 1299 1127 0979 0838 0698  0.551 0391 0211
0.80 2158  1.964 1818  1.684  1.546 1392 1208 0966  0.612
050 2797 2639 2519 2406 2287 2148 1969 1706 1238
095 3560  3.431 3328 3312 3084 3027 23806

3.405

2.205
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Table 2. The values of isochrones for d/a, = 1.5

Isochrones { = x/2,/(a,7) for 4(6)

Temperature d=14p0, a=(010-p0"", a=(1-p0)"2 a=exp (B9,
9 i=1 =100  f=05828 B =03333 —0.7626
0.05 1.3895 1.6003 1.5724 1.6036 1.6081
0.1 1.1635 1.3858 1.3708 1.3613 1.3664
0.2 0.9020 1.1164 1.1061 1.1055 1.1082
0.3 0.7323 0.9469 0.9440 0.9481 0.9483
0.4 0.5940 0.7938 0.8024 0.7983 0.7964
0.5 0.4768 0.6556 0.6716 0.6662 0.6622
0.6 0.3709 0.5248 0.5477 0.5408 0.5349
0.7 0.2727 0.3961 0.4229 0.4143 0.4073
0.8 0.1794 0.2673 0.2934 0.2846 0.2777
0.9 0.0890 0.1360 0.1543 0.1478 0.1429
0.95 0.0444 0.0688 0.0795 0.0755 0.0726
Table 3. The values of isochrones for a/a, = 2
Isochrones { = x/2./(ay7) for @(0)
Temperature a=1+p0, a=(1-p0)""', a=(1-p6)"7% a=exp (B0,
0 a=1 g=2 B=08 B=0.5 B = 1.2564
0.05 1.3895 1.8015 1.7200 1.7200 1.7401
0.1 1.1635 1.5592 1.5227 1.5349 1.5481
0.2 0.9020 1.2827 1.2578 1.2684 1.2796
0.3 0.7323 1.120 1.1008 1.1050 1.1093
0.4 0.5940 0.9536 0.9723 0.9690 0.9654
0.5 0.4768 0.7954 0.8412 0.8303 0.8200
0.6 0.3709 0.6448 0.7109 0.6921 0.6753
0.7 0.2727 0.4917 0.5737 0.5482 0.5262
0.8 0.2794 0.3350 0.4209 0.3900 0.3668
0.9 0.0890 0.1719 0.2370 0.2108 0.1931
0.95 0.0444 0.0872 0.1279 0.1101 0.0994

at different values of d/a, calculated as integral-
mean relative thermal diffusivities within the range
fe[0; 1] which are 1+8/2, (expf—1)/B, (1—5)",
—[In (1 —B)}/B for equations (28)—(31), respectively.

The comparison of { at d/a, = idem in Tables 2
and 3 shows that within the range 1 < d/a, < 1.5 the
arguments ¢ for the quantities 0 = idem—0¢€[0.05;
0.60] at d/a, = idem do not differ greatly. Note that
at the value d/a, = 1.5 there correspond successfully
maximum relative thermal diffusivities a,,,,/a, equal
to 2.0; 2.14; 2.25; for equations (28)—(31). These
variations of thermal diffusivity with the growth of
temperature should be assumed to be very strong (for
the cases corresponding to equations (28)—(31) they
are shown graphically in Fig. 11), covering the behav-
iour of d(f) for a considerable part of known
materials.

Thus, for many of the materials applied in practice,
the thermophysical properties of which are described
by relations (28) and (29), the temperature field of a
half-space is determined, with acceptable accuracy,
by the familiar exact solution of the corresponding
problem with functions (30), (31) at aja, = idem
(1 < aja, < 1.5).

Analysis of Tables 2 and 3 indicates also high sen-
sitivity of temperature field determination to the tem-

) ] 1 ]
01 0.5

8

Fic. 11. Relations for @(@): (a) d=1+80 (B=1); (b)
d=exp (B9) (B=0.7626); (c) a= (1—p6)"* (B = 0.3333);
(dya=(1—-poh~" (B =0.5828).

perature relation d@ = @(6) thus making the problem
of finding the latter with great accuracy urgent.

The results obtained led to the conclusion that
under the first-kind boundary conditions the cal-
culation of temperature fields on the periphery por-
tions of bounded bodies as well may be substituted
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by the solution of a non-lincar problem for “identical’
half-space when non-lincar partal diferential prob-
lemns may be reduced to partial equations, whose solu-
lion 1s casicr to be obtained, or when it is possible. in
some cases, to make special substitutions, to come to
linear problems [33, 34]. In those specific cases when
| < dfay < 1.5 one can find temperature ficlds on the
periphery portions of an unbounded plate with linear
and exponential relations (28). (29) for «{0) using
accurate solutions for the half-space with a(0) deter-
mined according to (30) or (31).

It is clear that all of the above-obtained results are
valid also for the casc C(0) # 1 if w = [} C(d0 is
taken instead of (1.

Thus, it may be confirmed that the temperature
field is formed on the periphery portions of bounded
bodies following the laws of an ‘identical’ (in the sense
of coinciding thermophysical properties) half-space at
the first-kind boundary conditions. In fact, according
to (30) at fi =09 the value of A(D)[a(0) at = 1]
grows from [ at =0 to 100 at 0 =1 and cven in
the case of such a strong variation of thermophysical
propertics the laws of a half-spacc are valid.

Morcover, in this case the laws of the *period of a
half-space’ cover a great portion ol a bounded body
(Fig. 10}

9. CONCLUSION

The consideration of the process of non-stationary
heat conduction in terms of the migration of iso-
thermal surfaces allows one to find cquations for
determining the velocity of their migration in a half-
space and in bounded bodies at constant and tem-
perature-dependent thermophysical characteristics of
a material. In the analysis of these formulac a new
common feature of thermal kinetics regularization
and specific features of isotherm migration in central
portions of bounded bodies as well as near their outer
surfaces are found that are important for thermo-
physical applications.
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METHODE DE LA MIGRATION DES ISOTHERMES DANS L’ETUDE DU TRANSFERT
DE CHALEUR ET DE MASSE EN THEORIE ET EN PRATIQUE—I. CINEMATIQUE
DES CHAMPS DE TEMPERATURE

Résumé—Le mécanisme de la conduction thermique variable dans les corps avec ou sans transition de
phase de la substance est considéré en terme de migration des surfaces isothermes. Les équations sont
données pour déterminer la vitesse de leur mouvement dans un demi-espace et dans les corps finis avec des
propriétés thermophysiques dépendantes de la température. On trouve dans ce cas un nouveau com-
portement commun de la régularisation cinétique thermique qui est indépendant de la vitesse du mouvement
des isothermes. L’indépendance dans les zones centrales des corps limités vis-a-vis de la situation thermique
de leurs surfaces externes est aussi constatée. On considere l'effet des conditions aux limites
non linéaires sur la cinétique des champs de température avec rayonnement. Les régularités et les traits
spécifiques de la formation des champs de température constituent la base pour I'identification du coefficient
de transfert thermique et pour la dépendance de la diffusivité thermique vis-a-vis de la température.

DAS VERFAHREN DER ISOTHERMENWANDERUNG IN THEORIE UND PRAXIS
DER FORSCHUNG AUF DEM GEBIET DER WARMEUBERTRAGUNG—I.
KINEMATIK VON TEMPERATURFELDERN

Zusammenfassung—Der instationdre WérmeleitprozeB in Korpern mit und ohne Phasendnderung der
Substanz wird mit Hilfe von Ausdriicken fiir die Bewegung isothermer Oberflichen erfaBt. Die Gleichungen
werden abgeleitet, um die Bewegungsgeschwindigkeit der Isothermen innerhalb eines Halbraumes und
begrenzter Korper zu bestimmen. In diesem Fall wird eine neue allgemeine Eigenschaft thermodynamischer
GesetzmaBigkeiten gefunden, welche unabhingig von der Fortpflanzungsgeschwindigkeit der Isothermen
beziiglich der Zeit ist. Weiterhin wird auch die Unabhingigkeit dieser Gréf8e im Inneren begrenzter
Korper von der thermischen Situation an deren Oberfliche gezeigt. Dabei wird der Effekt nicht-linearer
Randbedingungen auf die Dynamik von Temperaturfeldern durch das Strahlungsgesetz beachtet. Die
gefundenen GesetzmaBigkeiten und spezifischen Eigenschaften der Ausbildung von Temperaturfeldern
bilden die Grundlage zur Identifikation des Wirmeiibergangskoeffizienten und der Temperaturabhin-
gigkeit der Temperaturleitfahigkeit.

METOA NEPEMEIMIEHUA WU30TEPM B TEOPUM U ITPAKTUKE UCCJIEAOBAHUS
TEIMMJIOMACCOIIEPEHOCA—I. KUHEMATUKA TEMIIEPATYPHBIX ITOJIEN

Amnoraips—IIpouecc HecTAHOHAPHOH TEMJIONPOBOAHOCTH B Tesax Oe3 dasosoro u ¢ $a30BbIM mepe-
XOMOM BELIECTBA PACCMOTPEH B TEPMHMHAX MEPEMEILCHAS H30TEPMHYECKHX MOBEPXHOCTEH. BbiBeaeHbl
GopMyJIbI IS ONpeleSIeHHs CKOPOCTH MX MEPEMELLEHNs B NOJYNPOCTPAHCTBE ¥ B OTPAHHYEHHBIX TeJax
NpH NOCTOAHHBIX M TNPH 3aBUCAIMX OT TEMNEPATYphl TEIUIOMH3UYECKHX XapakTepucTHkax. IIpu aToM
YCTaHOBJIEH HOBBIH OOIIMHA MPH3HAK PeryibApH3aliy TEIUIOBOM KMHETHKH, 3aK/IIOYAIOILMIACH B HE3aBH-
CHMOCTH CKOPOCTH TepeMellleHHs MU30TePM OT BPeMeHH. BhisiBlieHa Takke HE3aBHCHMOCTL 3TOM BesH-
YHHBl B HEHTPAJbHBIX YaCTAX OrpPAHHYEHHBIX Tl M OT TEILUIOBOM OOGCTAHOBKM HA HX HAapyXHO#M
NOBEPXHOCTH. PacCMOTpPEHO BIMAHNE HEJIMHEHHBIX TPAaHHYHBIX YCIIOBHi 11O 3aKOHY M3JIy4eHHS Ha KWHe-
MAaTHKY TEMIIEPAaTyPHBLIX NoJjel. Y CTaHOBNEHHbIE 3aKOHOMEPHOCTH B 0COOEHHOCTH GOPMHPOBAHHA TeM-
NEPATYPHBIX MO NOJIOXKEHLI B OCHOBY HACHTH(HKALMH KO3 PHUKHEHTA TEMI00TAaYH U 3aBUCUMOCTH
k03¢bdUIMEHTa TEMIEPATYPONIPOBOAHOCTH OT TEMIIEPATY DAL



